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ON B. G. GALERKIN'S METHOD FOR THE SOLUTION 
OF BOUNDARY VALUE PROBLEMS 

M. V. Keldysh 

STJMMARY 

In  1915 B. G. Galerkin proposed a method 
f o r  the solut ion of boundary value problems of 
ordinary d i f f e r e n t i a l  equations. A s  became 
known l a t e r ,  i n  the case of var ia t iona l  prob- 
lems t h i s  method coincides e s sen t i a l ly  with 
Rie tz ' s  method. B u t  Galerkin's  method does 
not  depend on the var ia t iona l  nature of prob- 
lems and may therefore  be applied t o  non- 
s e l fad  j o i n  t e quat ions. 

p l i c a b i l i t y  of the method t o  some classes  of 
d i f f e r e n t i a l  equations. 

ordinary d i f f e r e n t i a l  equation of order 2n. 
Section 2 contains a detai led invest igat ion 
of a l l  boundary conditions of t he  second- 
order equation, which r e l a t e  t o  the  values of 
the  functions and of the  der ivat ive a t  each 
endpoint of t he  interval .  

In  the  present paper we prove the  ap- 

In  Section 1 we consider the  general  

In  Section 3 we 
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consider t he  Dirichlet problem f o r  p a r t i a l  
d i f f e r e n t i a l  equations. The convergence ( i n  
t h e  mean) of t he  solut ions and the  conver- 
gence of t he  eigenvalues a r e  es tabl ished i n  
the  general  case. 

This a r t i c l e  provides a proof of the  convergence of 
Galerkin's method f o r  cer ta in  types of l i n e a r  d i f f e ren t i a l  equa- 
t ions.  

l u t ion  of  boundary value problems of ordinary d i f f e r e n t i a l  
equations, which he applied t o  the solut ion of a number of 

s t a b i l i t y  problems in e l a s t i c i t y  theory" I. 
c lea r  that i n  the  case of var ia t iona l  problems t h i s  method i s  
e s sen t i a l ly  the same as that of Rietz. However, t he  appl icat ion 
of Galerkin's method does n o t  depend on the  var ia t iona l  problem 
which determines the  d i f f e r e n t i a l  equations, and can be a l s o  
applied t o  non-selfadjoint equations. 
method w a s  widely applied t o  non-selfadjoint systems i n  s tud ies  
of non-conservative mechanical systems, and invariably yielded 
good resu l t s .  

Rie tz ' s  method f o r  the solut ion of var ia t iona l  problems 
w a s  substant ia ted f o r  the simplest cases i n  the  works of Rietz  
himself. 
voted t o  t h i s  method, and, par t icu lar ly ,  it was studied in depth 
i n  the  fundamental works of  N. M. Krylov and N. N. Bogolyubov. 
On the  other hand, insofar  as we know, the appl icat ion of 
Galerkin's  method t o  non-selfadjoint systems has not  ye t  been 

I n  191 5 B. G. Galerkin proposed a new method f o r  the  so- 

Later  it became 

Recently Galerkin's  

After the  work of Rietz, a number of s tud ies  were de- 

substantiated.  In  cer ta in  quarters (2'3) doubts were even ex- 
pressed about the v a l i d i t y  of i ts  application. 

Petrov") published a paper in which he gave a theo re t i ca l  
j u s t i f i c a t i o n  of Galerkin's method f o r  a number of spec ia l  
cases, by reducing the convergence problem t o  the invest igat ion 
of an i n f i n i t e  system of linear equations. 

We shall a l s o  take advantage of the connection between 
Galerkin's  method and systems of l i n e a r  equations, and we w i l l  

Recently G. I. 
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prove the  convergence of t h i s  method i n  a grea t  number of cases 
by imposing a number of  necessary r e s t r i c t i o n s  on the s e t  of 
approximating functions. 

t i a l  equation of order 2n, and we confine ourselves t o  the 
simplest boundary conditions. 
other  boundary conditions should present no major d i f f i c u l t i e s .  

of the second-order equation which r e l a t e  the values of  the 
functions and of t h e  der iva t ive  a t  each endpoint of the interval .  

I n  Section 3 we consider the Dir ich le t  problem f o r  p a r t i a l  
d i f f e r e n t i a l  equations. I n  t h i s  case, under the general r e s t r i c -  
t i ons  imposed on t h e  s e t  of functions, we no longer have uniform 
convergence of the solutions.  We establ ish,  however, t h e i r  con- 
vergence i n  the  mean, and the  convergence of  the  eigenvalues. 
In  t h i s  case, the  invest igat ion of the i n f i n i t e  system i s  a l so  
considerably more d i f f i c u l t .  

I n  Section 1 w e  consider the  general ordinary differen- 

The carrying over of the proof t o  

I n  Section 2 we analyze in d e t a i l  a l l  boundary conditions 

SECTION 1.  THE EQUATION OF ORDER 2~ 

Let us consider on the i n t e r v a l  0 x 1 the equation of 
order 2n 

L(Y) = p(x) 2n dx 
f 

depending on the parameter X which var ies  i n  the  region D of the 
complex plane. The coef f ic ien ts  of t he  equation a r e  assumed t o  
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be continuous functions of x and A, when x var ies  on the i n t e r v a l  
(0.1 ) and X i n  the region D, and ana ly t i c  functions of h i n  D. We 
w i l l  assume that the  coef f ic ien ts  are d i f f e ren t i ab le  with respect  
t o  x as many times as w i l l  be necessary, and t h a t  

We w i l l  consider the system S formed by equation (1) and the 
simplest boundary conditions 

(2) 
(k) (k )  y (0) = y ( l ) ,  k = O,l,..., n - 1 

For a f ixed X, e i t h e r  the system S, has, as i s  known, a solut ion 
f o r  any value of t he  right-hand s ide  of ( l ) ,  or the  homogeneous 
system S (obtained by set  up f (x) = 0) admits a solution d i f f e ren t  
from zero. The values A f o r  which the l a t t e r  condition holds a r e  
known as eigenvalues. 

Academician B. G. Galerkin proposed a method for solving 
the system S, which required the solut ion of a system of l i n e a r  
a lgebraic  equations f o r  the construction of each approximation. 
This method consis ts  of the  following: 

Let 
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be a s e t  of functions sa t i s fy ing  the boundary conditions (2). L e t  

y m =  d m ) c p , ( X )  + $)Q2(") -k * * *  4- e ) % ( X )  ( 4 )  

and t o  determine the constants e' construct a system of l i nea r  

a lgebraic  equations as follows: 

This system has the  following form: 

m 

and i ts  coef f ic ien ts  are holomorphic functions of h i n  D. 
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The eigenvalues of the system S w i l l  be sought as the  
l i m i t s  of the eigenvalues of the algebraic  system (6), and if h 
i s  not  an eigenvalue of the system S, i t s  solut ion w i l l  be 
sought as the l i m i t  of t h e  sequence 

with coeff ic ients  determined from the equations (6). 

as Euler’s equation f o r  a r e a l  functional, t he  method of 
Academician Galerkin coincides with the method of  Rietz f o r  the  
solut ion of the corresponding var ia t iona l  problem. A s  d i s t i n c t  
from Rie tz l s  method, however, the method of Academician Galerkin 
can be applied a l so  t o  non-selfadjoint equations, and t o  
equations with complex coefficients.  

We sha l l  prove the following proposition: 
If the s e t  of functions consisting of the f irst  n powers 

A s  i s  known, i n  the case t h a t  equation ( 4 )  can be obtained 

of x and of the n-th der ivat ives  of the functions of sequence (3)  

i s  complete i n  the mean square deviation sense, then 

1. The eigenvalues of the system S a r e  obtained by a 
l imit ing process from the eigenvalues of system (6). 

2. The eigenfunctions of the system S a r e  obtained as 
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l i m i t s  of the sequence (7 ) ,  whose coeff ic ients  are obtained from 
the solut ion of t he  homogeneous equations ( 6 ) ,  which correspond t o  
the eigenvalues of system (6). 

3. If X is  no t  an eigenvalue of t he  system S, the  so- 
l u t ion  of S i s  the l i m i t  of the sequence (7) with coeff ic ients  de- 
termined from (6) f o r  the  same value of 1. 

For j < n the der ivat ives  y:’) (x) converge uniformly t o  

the corresponding der ivat ives  of the solut ion y, while y(n) (x) 

converges i n  the  mean t o  y(n) (x). 

be wri t ten in the  form 

m 

For purposes of proof we note that equation (1) can always 

n-1 n-1 

Further, i n  the  proof we can assume t h a t  the functions @)(x) 

form an orthonormal s e t  w i t h  weight p (x) 
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I n  fact, if this i s  not  the case, we can always construct 
a new s e t  of functions Qm(x), obtained from the  s e t  (3) by a 

l i n e a r  transformation which orthogonalizes the  s e t  of n-th deriva- 
tives (3) 

i= 0 i= 0 

The s e t  of a lgebraic  equations of  the m-th approximation which i s  
obtained i n i t i a l l y  from the  sequence of  functions $m, can be ex- 

cluded from system (6) by the change of variables 

m 

and by the formation of l i n e a r  combinations of t he  equations of  
system (6) 

i 



9 

It follows that the eigenvalues of system ( 6 )  and xi = 0 coincide, 

and that the sequence (7) remains unchanged i n  the  t r ans i t i on  from 
the  sequence c$ t o  the sequence 4,. 

L e t  us note several  propert ies  of the  expansions with 

respect  t o  the  set  of functions cp!)(x). 

By virtue of the  boundary conditions (2), every function 

k ("'(x) i s  orthogonal t o  a l l  powers x , f o r  k < n, Tm 

1 

xk 9;' (x) dx = 0, k < n. 

0 

From this, and from the completeness of  the  set  of functions (8) 
it follows t h a t  any function f ( x )  which i s  orthogonal t o  a l l  

(d 
'9m 

1 ' fcp(n) dx = 0, J m  
0 

i s  a polynomial of degree n-1 
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f (x) = c + c ,x+  - * -  + cn-l 2-’ , 0 

and any function g (x) which is orthogonal t o  the  f irst  powers 
of x 

1 

J gxk dx = 0, 

0 

r k < n, 

can be approximated i n  the  mean by l i n e a r  combinations of the 

functions v ( ~ ) .  I n  par t icu lar ,  i f  the  s e t  9:’ i s  orthogonal- m 

ized with weight p (x), the Fourier expansion of  g (x) with 

respect t o  the  functions converges i n  the  mean t o  g (x). 

If the functions v:’ (x) a r e  orthogonal, then by v i r tue  

of  the boundary conditions, 

Consequently, system (6) can be writ ten i n  the  form 

---.. ..-., ...... ..._... ..... I 
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m 
(m) + 1 Aik ( A )  e) - f i  = 0, X. 
1 

kl 

where 

1 

(-l)n fi  = f qidx J 
0 

Further, we put 

Aik = aik + bik, 

where 
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The expression aik is  obtained by in tegra t ing  by p a r t s  n times 

the  term Aik which corresponds t o  the  f i rs t  term in the  square 

bracket. 

system of l i n e a r  equations 
The system (10) i s  obtained by truncating the i n f i n i t e  

xi f ), Aik (1) 5 - f i  = 0. 

We shall prove that the system (13) i s  equivalent t o  the system S 
i n  the following sense: 
there  corresponds the solution of system (13) 

To the solution y (x) of the system S 

0 

with convergent sum of squares 

W 

k=1 
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and conversely, t o  any solut ion of system (13) 
of  squares there  corresponds a solution of the 
t i cu la r ,  the eigenvalues of systems (13) and S 

Let y (x) be the  solut ion of system S. 

with convergent sum 
system S. In  par- 
coincide. 
We s h a l l  expand 

y(n) i n  a Fourier series with respect  t o  the orthogonal s e t  of  

functions ,(n) (x). 

formulas (14), w e  obtain the expansion 

Determining the  coeff ic ients  according t o  m 

m=l 

which converges in the mean, s ince Y ( ~ ) ( x )  i s  orthogonal t o  

2 n-1 1,  x, x , ... , x 

by virtue of the boundary conditions. 
and determining the  constants from the  boundary conditions, w e  
obtain the uniformly converging expansions 

Integrat ing t h i s  expansion, 

m=l 
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Multiplying equation (1 f )  by Q. (x) and in tegra t ing  on the in t e rva l  

(0, 1 )  we have, after integrat ion by par ts ,  the  following relat ion:  

1 

1 n-1 n-1 

0 j= 0 j -0 

(1 6 )  

Subst i tut ing in the above the expansions (1 5) and (1 5 ' )  and 
in tegra t ing  the  s e r i e s  term by term, we ascer ta in  t h a t  the 
s a t i s f y  system (13). 

rc 
Conversely, l e t  us assume t h a t  xk i s  a solution of system 

(13) with convergent sum of squares. 
theorem, we form the  function 'll (x) with the s e r i e s  expansion 

Applying the  Fisher-Riess 

aJ 

with respect  to the  orthogonal system C P ( ~ ) ,  and we put  m 



The s e r i e s  thus obtained and i ts  der ivat ives  of order < n converge 
uniformly, since they a r e  obtained by in tegra t ing  the  se r i e s  (17), 
and i n  addition 

almost everywhere. 
boundary conditions, and it must be shown t h a t  it s a t i s f i e s  the 
d i f f e r e n t i a l  equation ( 1 1 ) .  It follows from the  def in i t ion  of 
y (x) t h a t  the  equations (13) can be wri t ten i n  the form (16). 
Integrat ing by pa r t s  n times the last  t w o  terms of the in t eg ra l  
expression (1 6), we obtain 

The function y (x) c l ea r ly  s a t i s f i e s  the 

1 n-1 x x n-1 

It follows t h a t  the f'unction i n  the square brackets, being ortho- 

gonal t o  a l l  w i l l  be a polynomial of degree n - 1 
m 
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Different ia t ing t h i s  r e l a t ion  n times, we see that y (x) s a t i s f i e s  
equation (1 ). 

obtained by a l imi t ing  process from the eigenvalues of system ( lo) ,  
and the solut ions 9 ,..., % ,... of system (13) a r e  obtained by a 

W e  s h a l l  now prove t h a t  the eigenvalues of system (13) are 

l imi t ing  process from the  solut ions x1  (m) , . . . ,e) of system (1 O), 

and t h a t  strong convergence holds 

By v i r tue  of Koch's results f o r  l i n e a r  systems it suffices t o  show 
t h a t  the  s e r i e s  

i, k 

converges uniformly i n  the region D ( l  I. 
immediately that the  sequence y k )  converges i n  the mean t o  the 

n-th der ivat ive of the solut ion of S, and converges mi- 

formly t o  yJ (x) f o r  j < n. 

From (1 8) it follows 

m 

We w i l l  prove that the se r i e s  (19) converges i n  the in- 
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t e r i o r  of  the region D i n  which h varies,  and t h a t  the  sum of the 
s e r i e s  i s  uniformly bounded i n  the i n t e r i o r  of D. 

Since the terms of  the se r i e s  (19) are the squares of the 
moduli of ana ly t ic  functions, it follows that the se r i e s  (19) 
converges uniformly i n  the i n t e r i o r  of  D*. 

It  suf f ices  t o  show the  convergence and boundedness of 
the sum of  the  series 

i , k  i , k  

Let us consider the f i rs t  ser ies .  

equality, we have f o r  the orthogonal s e t  ~ ( ~ 1  with weight p (x) 

By v i r tue  of Bessel 's  in- 

m 

since aik i s  the i - th  Fourier 

n-1 

j= 0 

coef f ic ien t  of 

2 dx 

my 

the function 

*The la t te r  follows from the f a c t  that i n  any subregion D, the  
s e r i e s  (19) i s  dominated by a se r i e s  of harmonic functions with 
bounded sum, and from Harnak's theorem. 



1 8  

n-1 

Thus 

co 1 ,n-1 

k 1  o ' j = O  

Expressing (p ( *  J ,  (x) i n  terms of (p(") (x) by the formula 
k k 

we obtain 

Consequently, the l e f t  s ide of t h i s  equal i ty  i s  the Fourier co- 
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e f f i c i e n t  of a function of t which i s  obtained by dividing the 
bracket i n  the integrand in to  p (t) on the in t e rva l  0 S t 
and zero on x < t 5 1. 

x 

By virtue of Bessel 's  inequal i ty  

OD z 
k1 

and by virtue of (20) 

T' 
L laik It f o l l o w s  t h a t  the s e r i e s  converges and tha t  2 

i t s  sum i s  bounded i n  the i n t e r i o r  of the region D. 
2 

Let us now consider the se r i e s  1 Ibik(h) I . Using the 

expression f o r  bik, w e  have, by Schwartz' s inequal i ty  

1 1 

0 0 

2 
dx 
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whence 

1 x 

J J 
0 0 

computing the sums on the r i g h t  s ide i n  
we have, 

n- j -1 (x ’- 

(n - j - I ) !  

n-1 

c r j 0  

j = O  

the same manner as above, 

which proves the boundedness of the sum of the s e r i e s  on the 
right-hand side. 

vergence of B. G. Galerkin’s method. 
This completely proves the above proposit ion on the con- 
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SECTION 2. THE SECOND ORDER EQUATION 

We shall analyze i n  grea te r  d e t a i l  tbe case of the second- 
order equation. Let us consider the second-order equation 

sa t i s fy ing  the  conditions i n  Section 1,  and l e t  us consider 
boundary conditions of the type 

We shall prove the convergence of Galerkinls method under the 
following conditions imposed on the system ( 3 ) :  

a)  The functions (PI (x) a r e  twice different iable ,  and 

satisfy the boundary conditions (22). 

b) The s e t  of der ivat ives  Q: (x) i s  complemented by 
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the function $ (x) which i s  defined by the equa l i t i e s  

i f  ne i ther  of the two numbers ho and h, is  equal t o  zero and 

f o r  h = 0 o r  h = 0, and it is  complete i n  the space, with 

distance 

0 1 

where E. = 1 i f  hi i s  d i f f e ren t  from zero and in f in i ty ,  and E = 

= 0 if  hi = 0 o r  h. = OD. 

0 1  

1 1 

1 

c) If h = h = 0, the set  of function p a i r s  (cp,, 'pi) 

\ i s  complete i n  the space of p a i r s  ( y dx, y where y i s  a func- 

t ion  with a summable square, and where dis tance is defined by the 
formula 
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with 

I n  par t icu lar ,  condition c) i s  s a t i s f i e d  i f  the s e t  of der ivat ives  
r > IQ; (x), i s  complete and the s e t  of functions (3) contains unity. 

We s h a l l  dwell on the case when ho and h, a r e  d i f f e ren t  

f r o m  zero and inf in i ty .  
analogously. 

The remaining cases a r e  considered 

Let hi be f i n i t e  (hi # 0, OD). The s e t  of der ivat ives  of 

the functions of sequence (3) can be considered orthogonal i n  the 
space with distance p ( f ,  g )  

Let us consider the Fourier expansion of the function f 
with f i n i t e  norm p (f ,  0):  



f CiQfi= (23) 

This expansion converges in the space, with dis tance p (f, g). 
follows from the def in i t ion  of distance t h a t  t h i s  expansion converges 
i n  the mean on the i n t e r v a l  0 < x < 1,  and i n  the ordinary sense a t  
the points  x = 0 and x = 1. 

shown that the  functions cp' (x) s a t i s f y  the  r e l a t ion  

It 

By v i r tue  of the  boundary conditions (22) it can be e a s i l y  

m 

1 
n 

Keeping i n  mind that the s e t  of functions 

i s  complete i n  the  space with distance 
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'We conclude that any function f sa t i s fy ing  the r e l a t ions  

1 
M 

i s  of the  form f = CJI, and t h a t  any function sa t i s fy ing  the  re- 
l a t i o n  

1 
\. 
J f JI d x +  f (0) $ (0) + f (1) 
0 

( 24) 1) = 0, 

i s  an element of t h e  l i n e a r  space determined by the funct ional  
(P " 0  

space with dis tance p (f, g). 

the equations f o r  Galerkin's n-th approximation, can be obtained 
from the r e l a t ions  

I n  par t icu lar ,  the  Fourier s e r i e s  (23) converges t o  f i n  the 

The i n f i n i t e  system (3 0), which when truncated yields  

0 
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by formal subs t i tu t ion  of the se r i e s  

If y(x) i s  a solution of the system S, then y' s a t i s f i e s  re- 
l a t i o n  (24) by virtue of the boundary conditions, and therefore 
the  expansion converges t:, y' r e l a t i v e  t o  the distance p(f,g). The 
expansion f o r  y converges uniformly by v i r tue  of the convergence 
in the mean of the s e r i e s  f o r  y ' on (0, l )  and the convergence of the 
s e r i e s  

From the  above there  follows the v a l i d i t y  of the formal subst i tu-  
t ion  of the se r i e s  (26)in (25), and therefore t o  the solution of  
system S, there corresponds the solution of equations (10) w i t h  
convergent sum of squares 
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1 
n 

0 

Conversely, given the  solut ion of system (1 0), with convergent 
sum of squares, w e  l e t  

The second expansion converges r e l a t i v e  t o  the distance p(f,g) and 
the first uniformly. The function y i s  the  in t eg ra l  of  y * there- 

fore ,  the r e l a t ion  obtained from (25) by replacing y’ by yl i s  

s a t i s f i e d  f o r  the integrated terms ( fo r  x = 0, l ) .  Integrat ing 
t h i s  r e l a t ion  by par t s ,  and using the boundary conditions f o r  

Qi, we Obtain 

1 ’  

I X !i [py. + W +  5 (ry-f)dxJ 1 cpfdx+ ’ ( 0 )  [py, (0) + qy (o)]  - 
0 0 hO 
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whence 

LPYl + VI = c, S O  

The f irst  r e l a t ion  shows t h a t  y i s  a solution of the 
equation, and a comparison of  the f irst  r e l a t ion  with the other 
r e l a t ions  implies 

because of the expansions of  y and y 
1 

The function y s a t i s f i e s  the boundary conditions. 

vergence of the s e r i e s  (19) ,  

which converge f o r  x =  0,l. 

To complete the  proof we must s t i l l  es tab l i sh  the con- 

We have 
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The proof of the convergence of the se r i e s  i s  completely 
analogous t o  t h a t  given i n  section 1 ;  it i s  only necessary t o  
keep i n  mind the boundary conditions f o r  the functions cp , and 

a l so  the  f a c t  t h a t  an expression of the type 
i 

1 

Ccpf (0) + Ky; + (1) Jf fcpfdx 

0 

i s  the Fourier coef f ic ien t  of a function which is  equal t o  C f o r  
x = 0, K f o r  x = 1,  and f (x) f o r  0 < x < 1. 

SECTION 3. THE DIRICHLET PROBLEM FOR EQUATIONS 
OF THE ELLIPTIC TYPE 

L e t  us consider i n  the region D of the n-dimensional space 



x (7 ,  ..., x ) the  equation of the e l l i p t i c  type n 

n n n 

whose coeff ic ients  Ai, B depend l i n e a r l y  on the parameter A, with 

the boundary condition 

u =  0 

on the boundary r of the  region D. 
The coef f ic ien ts  of equation (27) are assumed t o  be con- 

tinuous with a s u f f i c i e n t l y  la rge  number of p a r t i a l  der ivat ives  
with respect  t o  the xi, and the boundary of the region D i s  

assumed t o  have continuous curvature, Because of  the e l l i p t i c i t y  
of  the  equation, the quadratic form 

i 'ik 'irk (29) 

i s  posit ive,  and we will assume t h a t  it i s  also nondegenerate on 
the boundary r of the region D, . 
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Equation (27) w i l l  henceforth be wri t ten i n  the form 

b. = b.'+ by.  
1 1 

a = a i  + lay, i 

Let 

be a s e t  of functions having continuous second derivatives,  and 
sa t i s fy ing  the  boundary condition. A s  i n  the case of an ordinary 
equation, Galerkin's  method consis ts  i n  f inding approximations t o  
the solut ion of the problem i n  the form 



, ,, .,..,_. ,., .... - - 

32 

with the constants y:) determined from the system of equations 

We s h a l l  assume t h a t  the  functions (31) s a t i s f y  the fo l low-  
ing  condition C. Whatever the function @ (x ,.. . , x ), having an 

integrable  square of  the gradient 

1 n 

equal t o  zero on the boundary r, there  e x i s t s  a sequence of l i n e a r  
combinations @m of the functions (31), the gradients of which con- 

verge i n  the mean t o  the  gradient +, 

f 2 
lim J lgrad (G - ") I dx= 0. 

m-+m 
(34) 
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Then the eigenvalues of  the equation (30) a r e  obtained by a 
l imi t ing  process from the eigenvalues of system ( 3 3 ) ,  and the 
gradients of the functions (32) converge i n  the mean t o  the 
gradient of the solut ion of  equation (30). 

requirement. 
Me note t h a t  condition C i s  equivalent t o  the following 

The s e t  of vector f i e l d s  consisting of 

a) the gradients of the functions cp 

b) a l l  vectors of the form 

m' 

c) the gradients of a l l  harmonic polynomials, are 
complete i n  the space of vector f i e l d s  P(P 1, P *,..., P ) with 
dis tance 

n 

n 
2 c p (PI ,  PI') = L IP.' - PI1\ dx. 

1 i 
(D) i=l 

To prove the above proposition, we can assume t ha t  the gradients 
of  the s e t  of  functions (31) a re  orthogonalized i n  the following 
sense. 



For any vector P, we  can construct Fourier coeff ic ients  
from the formulas 

dx. aQm - I T  P -  ym - J L p i k  i a% 
D 

(36) 

If the vector P i s  the  gradient of a function which vanishes 
on the boundary D, o r  i s  approximated i n  the mean by the gradients 
of such functions, then equal i ty  

p = y j  grad 'pi- (37) 

j=1 

i s  va l id  i n  the  sense of convergence in the mean. 
and s u f f i c i e n t  condition f o r  convergence i n  the mean of the s e r i e s  
(37) t o  some vector of  the aforementioned type i s  the convergence 

A necessary 

2 
of the se r i e s  1 IyjI 

Along with the  s e r i e s  (37) we s h a l l  a l s o  consider the 
s e r i e s  

W 

r 
i Y j Q j '  

j=1 
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From the  convergence i n  the mean of the se r i e s  1 I yj  I 2 

follows the convergence i n  the mean of the s e r i e s  
denoting by t x  the p a r a l l e l  segment of the axis x,, connecting 

the  point  x with the contour r, and keeping i n  mind tha t  cp 

vanishes on r, we have 

(38). In  f ac t ,  

j 

where 6 i s  the diameter of the region D. 
Theref ore 

keeping i n  mind that 
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j 
and tha t  by v i r tue  of the orthogonality of t h e  gradients Q 

From t h i s  inequal i ty  fo l lows  immediately the convergence 

From (39) it a l s o  follows t h a t  from the convergence i n  the 
in the  mean of the s e r i e s  (38). 

mean of the sequence 
, 

there  ensues the convergence i n  the mean of t he  sequence 
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We s h s l l  s t i l l  need the following proportion: If the se- 
quence (40) converges weakly t o  zero, then the sequence (41) a l so  
converges weakly t o  zero. Weak convergence of  (40) t o  zero means 
tha t  the norms 

a re  bounded, and t h a t  f o r  any vector Q with bounded norm 

From (39) follows the boundednzss of the norms of the functions 
Qm; therefore t o  es tab l i sh  weak convergence of (41 ) it suf f ices  

t o  show t h a t  f o r  any function g with integrable  square 

lim ' gQ, d x =  0. 
m + a  J 

D 
(42)  

Clearly it suf f ices  t o  es tab l i sh  (42)  f o r  continuous 
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functions g. Passing on t o  the l i m i t  i n  the equal i ty  

D D 
I 

where 

X 

0 

we obtain 

D D 

whence follows equal i ty  (4.2). 
Let us consider the equation (43) 
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ik' Because of the assumptions made about the coef f ic ien t  p 

there  exists a Green's function f o r  equation (4.3)) with the a id  
of which the solution or' the  equation i s  wri t ten i n  the form 

Formula (&!+) gives the solution t o  the Dir ich le t  problem f o r  
equation (43)' i f  the function F (<) s a t i s f i e s  HBlder's con- 
d i t i on  

where 1 < 1 < 1 1 1  i s  the distance between the points  < I ,  <If. 

t i cu l a r ,  (&!+) s a t i s f i e s  equation (43)  if  the function F (<) has 
bounded p a r t i a l  derivatives.  

function t h a t  t h i s  function i t s e l f  and i ts  p a r t i a l  der ivat ives  
can be wri t ten i n  the form 

In  par- 

It follows from the well-known propert ies  of Green's 



where a, ai a r e  uniformly continuous functions of the variables 

xi and Tk i n  the region D. 

function F ( E )  i s  summable i n  powers of q 2 1, then the expression 
(u) and a l so  

We s h a l l  need f’urther the following proposition: If the 

u. = E F (<) d< 
1 J ax, (45)  

D L  

P a r e  defined almost everywhere, where the function IUl i s  summable 

n n 
n - 2  n - 1  

f o r  p 9 q, the function l U i l p  i s  summable f o r  p 4 9, 

and 

r IU(’ dx < C1 IFIq dx, l U i i p  dx C2 lFIq dx. J J 
D D D D 

This proposition follows immediately from the following 
lemma: 

n 
a 

Lemma: Let a < n, q 2 1 ,  q 5 p < - q, l e t  the function 

F ( E )  be defined and pos i t ive  i n  the region D and IFIq be summable, 
and l e t  A (x) be a subregion of D dependent on the point  x, the 



diameter of which is  no t  l a rge r  than 6. 
Then the function 

i s  f i n i t e  almost everywhere i n  D, and 

where C is  a constant depending on the numbers a, q, p, n. 

function F(<). 

theorem of  Riess(5) the function 

L e t  us es tab l i sh  f i rs t  the inequal i ty  (47) f o r  the bounded 

In  t h i s  case I(x)  i s  f i n i t e  everywhere. By v i r tue  of a 

D 



1 
P 

i s  a logarithmically cmvex function of the  var iables  a = -, 
@ = - i n  the t r iangle  0 S a S p, 0 5 B 

a = al t f a2 (1 - t), J3 = B , t  +- B, (1 - t) we have 

1 
9. 

1,  i.e., f o r  0 < t < 1, 

Computing the limits of the means f o r  a = B = 0, we have 

r F ( E )  dE 

En-a J ra 
Max 

A(x> = Max J % * c l  
a G(0,O) = Max 

A ( x ) ~  
Max F (x) 
X 

F(E)  

where C 1 
Hzlder's inequality,  f o r  ap < n 

depends only on n and a. On the other hand, because of 



Theref ore 

1 I 1 

1 n 

where C depends only on n, p and a. The inequal i ty  obtained 

gives 

2 

1 Because of the logarithmic convee ty  of G, f o r  0 5 - < 1, 
q 

1 1 n 
9 P aq 
- 2 - 2 -  
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1 
9 

Now l e t  F (<) be a function with summable q-th power. 

The right-hand s ide  of  t h i s  inequal i ty  i s  f i n i t e ,  since a - < n, 

and consequently (47) i s  proved f o r  bounded F (<). 
We 

w i l l  construct an increasing sequence of  bounded functions Fn(F;) 
converging i n  the mean power q t o  F (<). 

By vi r tue  of Lebesque’s theorem 

IF (x) = l i m  JF (x). 
m + a  m 

P Since the sequence JFm increases, the inequal i ty  (47) f o r  F i s  

obtained by a l imit ing process from the corresponding inequal i ty  
f o r  F . It  follows i n  par t icu lar ,  that the  f’unction J (x) i s  

m 
f i n i t e  

(33) 

and i n  

F 
almost  everywhere. 
Let us now turn our a t ten t ion  t o  the system of equations 

Keeping i n  mind the orthogonality of  the  functions cp (35), 

view of Green’s theorem 
j 
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r av ) d x =  - -__  au av dx, 

J u c  D ( i )  & ( c P i k z  1 k k D i k  ax ax 
i k  

which holds f o r  any function u sa t i s fy ing  the r e l a t ion  (28), we 
can wri te  the system of  equations (33) i n  the form 

(j = 1, 2,...,m), 

where 
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The system ( 3 9 )  i s  a truncation of t he  i n f i n i t e  system 

Let us consider i n  Hi lber t  space the transformation 

i 

i t  follows f rom (51 ) that Y 

vector 

i s  the Fourier coef f ic ien t  of the 
j 



I n  f ac t ,  pu t t ing  

By v i r tue  of Green’s formula, we obtain 

m 



By vi r tue  of the lemma which has been proved, the 
(m) 

convergence i n  the mean of U 

i n  the mean of  the series (52), and consequently, Y converges 

t o  the  Fourier coef f ic ien t  of the  vector U . We shall note that 

i n  the sense of convergence i n  the mean 

t o  U follows from the convergence 
(d 
j 

i i 

i 

(d 
since U i s  approximated i n  the mean by the vectors U , which 

i i 
are the gradients of continuous functions which vanish on the 
boundary D. 

gradient of t he  solut ion of equation (30) a re  a solut ion with a 
converging sum of squares of the system (50), and conversely, t o  
any solution of system (50) w i t h  a converging sum of squares, 
there  corresponds a solut ion of equation (30) whose gradient 
i s  determined by the formula 

We s h a l l  now prove that the Fourier coef f ic ien ts  of the 

grad cp . 
j 

grad u = 

L e t  u be a solut ion of (30). Then i n  the sense of 
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convergence i n  the mean 

, grad u = 1 y grad (4 . 
j j 

The solut ion u satisfies the r e l a t ions  

[L (u) - f] cp dx = 0, 
D 3 

and applying Green's formula we have 

) ] d x =  0; 
aQj 

D i , k  ikaXi a\ 
+ b u y  cp 

j 
J [ l  P --- 

subs t i tu t ing  i n  the above the expansions f o r  u and grad u 
which converge i n  the  mean, we f ind  tha t  Y s a t i s f i e s  the 

system of equations (50). 
Conversely, i f  Y. i s  a .solution cf system (50) with a 

J 

j 
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convarging sum of squares, then by v i r tue  of the  f a c t  t h a t  the 
transformation (51) is  equivalent t o  (53), and also putt ing 

we have 

= - l ' - ( I a . u .  ac + bu - f \ j d x ;  
1 1  J ax 

D j  

almost everywhere. We prove analogously that 

u =  - i G ( l a j u j + b u - f  j d x  \ (55) 
D 

almost everywhere. 
2 2 

The functions Iui , luil a r e  integrable,  therefore  F = 
- 7 - L aiui + bu - f has also an integrable  square. 

the above remark t h a t  both u and ui a r e  integrable  i n  the power 

I t  follows from 

. Applying repeatedly t h i s  proposition, we see that 
2n - - -  

'1 n - 2  
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both u and ui, and hence a l so  the function F a re  integrable i n  the 

n 
n -1 

power p1 > -. 
But then, by v i r tue  of Hijlder's inequal i ty  

P-1 
D - 1 

D D 

p(n - 1 )  

P - 1  
Keeping i n  mind t h a t  < n, we conclude that u and the ui 

are bounded. 

and s a t i s f y  the HElder condition with any f r ac t iona l  index, and 
a r e  equal t o  the  der ivat ives  of u. Because of th i s ,  F i s  con- 
tinuous, and satisfies H'dlder's condition, and theref ore u satis- 
f ies  equation (30) and the boundary condition (28). 

From the equivalence of the Dir ichlet  problem f o r  equation 
(30) and the system ( 5 0 ) ,  which has been proved, there  follows, 
i n  par t icu lar ,  the coincidence of the eigenvalues fo r  system (50) 
and equation (30). 

We s h a l l  now prove t h a t  the  eigenvalues of system (50) and 
i t s  solution a re  obtained by a l imit ink process from system (48 )  
where 

Now i t  f o l l o w s  f rom (54) t h a t  the ui are continuous 
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m 

From t h i s  w i l l  c l ea r ly  follow the above-mentioned proposition 
about Galerkin's  method. 

t o  show t h a t  the  transformation (51 ) i s  completely continuous*, 
i.e., t h a t  weak convergence t o  zero of y (y  , 9 Y2' - . 9 Y m 9  1 

To e s t ab l i sh  these propert ies  f o r  system (50) it suf f ices  

(4 implies strong convergence t o  zero of the sequence Y 

*It can be e a s i l y  seen that i n  the case of p a r t i a l  d i f f e r e n t i a l  
7 2 

equations the s e r i e s  L IA.  I generally no longer converges. To 
JS 

this end it suffices t o  consider the equation 

Acp + 

on the square 0 < x, y < IT 
functions 

- 4 
%,n n2 

_ -  

arid the s e t  of approximating 

s i n  n x -  s i n  m x  
2 2  n +m 
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(4 
j 

The numbers Y a r e  defined as the Fourier coeff ic ients  of the 

vector U!m) which i s  determined by the formula (53); therefore 

i t  suf f ices  t o  show t h a t  from weak convergence t o  zero of the 
functions Fm( <) 

J 

there  follows convergence i n  the mean t o  zero of the vectors 

(m) - - aG Fm (<) dE. u -  
J ax, j 
D J  

To see this, we make f i rs t  of a l l  the following remark. 
If the function H (x, <)  i s  uniformly continuous when x 

and < vary i n  D, then from (56) f o l l o w s  uniform convergence t o  
zero of the function 



I n  f a c t ,  f o r  an a r b i t r a r y  E the region D can be decomposed in to  a 
f i n i t e  number of pa r t s  D,, i n  such a way that the  point  

l i e s  i n  Da s a t i s f i e s  the inequal i ty  

which 

and since Da i s  independent of x, this shows uniform convergence 
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of h t o  zero. m 

G (x, E ) ,  we can represent i t s  der ivat ives  i n  the form 
Because of the above-mentioned property of Green’s function 

where the terms B 

the region D, and the  f irst  terms s a t i s f y  the inequal i t ies  

(x, E )  a r e  uniformly continuous a s  x var ies  i n  
j 

and vanish for 

where 6 i s  a r b i t r a r i l y  small. 
Then 
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The first terms of these expressions !'"(x) sa t i s fy ,  by v i r tue  of 
our lemma the inequal i t ies  

D D 

and consequently, 

D 

The second terms, because of  weak convergence t o  zero of 
the sequence Fm(E;) and uniform continuity of the kernels 

B j  (x, E ) ,  converge uniformly to  zero. 

a r b i t r a r i l y  small, this  proves the strong convergence of U!m) t o  
zero. 

Since 6 can be chosen 

J 
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